
1

CHAPTER 1

1Introduction

THE POSTSCRIPT® LANGUAGE is a simple interpretive programming lan-

guage with powerful graphics capabilities. Its primary application is to describe

the appearance of text, graphical shapes, and sampled images on printed or dis-

played pages, according to the Adobe imaging model. A program in this language

can communicate a description of a document from a composition system to a

printing system or control the appearance of text and graphics on a display. The

description is high-level and device-independent. 

The page description and interactive graphics capabilities of the PostScript lan-

guage include the following features, which can be used in any combination: 

• Arbitrary shapes made of straight lines, arcs, rectangles, and cubic curves. Such

shapes may self-intersect and have disconnected sections and holes. 

• Painting operators that permit a shape to be outlined with lines of any thick-

ness, filled with any color, or used as a clipping path to crop any other graphic.

Colors can be specified in a variety of ways: grayscale, RGB, CMYK, and CIE-

based. Certain other features are also modeled as special kinds of colors: re-

peating patterns, smooth shading, color mapping, and spot colors. 

• Text fully integrated with graphics. In the Adobe imaging model, text charac-

ters in both built-in and user-defined fonts are treated as graphical shapes that

may be operated on by any of the normal graphics operators. 

• Sampled images derived from natural sources (such as scanned photographs)

or generated synthetically. The PostScript language can describe images sam-

pled at any resolution and according to a variety of color models. It provides a

number of ways to reproduce images on an output device. 



IntroductionCHAPTER 1
2

• A general coordinate system that supports all combinations of linear transfor-

mations, including translation, scaling, rotation, reflection, and skewing. These

transformations apply uniformly to all elements of a page, including text,

graphical shapes, and sampled images. 

A PostScript page description can be rendered on a printer, display, or other out-

put device by presenting it to a PostScript interpreter controlling that device. As

the interpreter executes commands to paint characters, graphical shapes, and

sampled images, it converts the high-level PostScript description into the low-

level raster data format for that particular device. 

Normally, application programs such as document composition systems, illustra-

tors, and computer-aided design systems generate PostScript page descriptions

automatically. Programmers generally write PostScript programs only when cre-

ating new applications. However, in special situations a programmer can write

PostScript programs to take advantage of capabilities of the PostScript language

that are not accessible through an application program. 

The extensive graphics capabilities of the PostScript language are embedded in

the framework of a general-purpose programming language. The language

includes a conventional set of data types, such as numbers, arrays, and strings;

control primitives, such as conditionals, loops, and procedures; and some unusu-

al features, such as dictionaries. These features enable application programmers

to define higher-level operations that closely match the needs of the application

and then to generate commands that invoke those higher-level operations. Such a

description is more compact and easier to generate than one written entirely in

terms of a fixed set of basic operations. 

PostScript programs can be created, transmitted, and interpreted in the form of

ASCII source text as defined in this book. The entire language can be described in

terms of printable characters and white space. This representation is convenient

for programmers to create, manipulate, and understand. It also facilitates storage

and transmission of files among diverse computers and operating systems, en-

hancing machine independence. 

There are also binary encoded forms of the language for use in suitably controlled

environments—for example, when the program is assured of a fully transparent

communications path to the PostScript interpreter. Adobe recommends strict ad-

herence to the ASCII representation of PostScript programs for document inter-

change or archival storage. 



About This Book1.1
3

1.1 About This Book

This is the programmer’s reference for the PostScript language. It is the definitive

documentation for the syntax and semantics of the language, the imaging model,

and the effects of the graphics operators. 

• Chapter 2, “Basic Ideas,” is an informal presentation of some basic ideas under-

lying the more formal descriptions and definitions to come in later chapters.

These include the properties and capabilities of raster output devices, require-

ments for a language that effectively uses those capabilities, and some pragmat-

ic information about the environments in which the PostScript interpreter

operates and the kinds of PostScript programs it typically executes. 

• Chapter 3, “Language,” introduces the fundamentals of the PostScript lan-

guage: its syntax, semantics, data types, execution model, and interactions with

application programs. This chapter concentrates on the conventional program-

ming aspects of the language, ignoring its graphical capabilities and use as a

page description language. 

• Chapter 4, “Graphics,” introduces the Adobe imaging model at a device-

independent level. It describes how to define and manipulate graphical enti-

ties—lines, curves, filled areas, sampled images, and higher-level structures

such as patterns and forms. It includes complete information on the color

models that the PostScript language supports.

• Chapter 5, “Fonts,” describes how the PostScript language deals with text.

Characters are defined as graphical shapes, whose behavior conforms to the

imaging model presented in Chapter 4. Because of the importance of text in

most applications, the PostScript language provides special capabilities for or-

ganizing sets of characters as fonts and for painting characters efficiently. 

• Chapter 6, “Device Control,” describes how a page description communicates

its document processing requirements to the output device. These include page

size, media selection, finishing options, and in-RIP trapping. 

• Chapter 7, “Rendering,” details the device-dependent aspects of rendering page

descriptions on raster output devices (printers and displays). These include

color rendering, transfer functions, halftoning, and scan conversion, each of

which is device-dependent in some way. 



IntroductionCHAPTER 1
4

• Chapter 8, “Operators,” describes all PostScript operators and procedures. The

chapter begins by categorizing operators into functional groups. Then the

operators appear in alphabetical order, with complete descriptions of their op-

erands, results, side effects, and possible errors. 

The appendices contain useful tables and other auxiliary information. 

• Appendix A, “LanguageLevel Feature Summary,” summarizes the ways the

PostScript language has been extended with new operators and other features

over time. 

• Appendix B, “Implementation Limits,” describes typical limits imposed by im-

plementations of the PostScript interpreter—for example, maximum integer

value and maximum stack depth. 

• Appendix C, “Interpreter Parameters,” specifies various parameters to control

the operation and behavior of the PostScript interpreter. Most of these parame-

ters have to do with allocation of memory and other resources for specific pur-

poses. 

• Appendix D, “Compatibility Strategies,” helps PostScript programmers take

advantage of newer PostScript language features while maintaining compatibil-

ity with the installed base of older PostScript interpreter products. 

• Appendix E, “Character Sets and Encoding Vectors,” describes the organization

of common fonts that are built into interpreters or are available as separate

software products. 

• Appendix F, “System Name Encodings,” assigns numeric codes to standard

names, for use in binary-encoded PostScript programs. 

• Appendix G, “Operator Usage Guidelines,” provides guidelines for PostScript

operators whose use can cause unintended side effects, make a document

device-dependent, or inhibit postprocessing of a document by other programs. 

The book concludes with a Bibliography and an Index.

The enclosed CD-ROM contains the entire text of this book in Portable Docu-

ment Format (PDF). 



Evolution of the PostScript Language1.2
5

1.2 Evolution of the PostScript Language

Since its introduction in 1985, the PostScript language has been considerably ex-

tended for greater programming power, efficiency, and flexibility. Typically, these

language extensions have been designed to adapt the PostScript language to new

imaging technologies or system environments. While these extensions have intro-

duced significant new functionality and flexibility to the language, the basic

imaging model remains unchanged. 

Extensions are organized into major groups, called LanguageLevels. Three

LanguageLevels have been defined, numbered 1, 2, and 3. Each LanguageLevel

encompasses all features of previous LanguageLevels as well as a significant num-

ber of new features. A PostScript interpreter claiming to support a given

LanguageLevel must implement all features defined in that LanguageLevel and

lower. Thus, for example, a feature identified in this book as “LanguageLevel 2” is

understood to be available in all LanguageLevel 3 implementations as well. 

This book documents the entire PostScript language, which consists of three dis-

tinct groups of features. Features that are part of the LanguageLevel 2 or

LanguageLevel 3 additions are clearly identified as such. Features that are not

otherwise identified are LanguageLevel 1. 

A PostScript interpreter can also support extensions that are not part of its base

LanguageLevel. Some such extensions are specialized to particular applications,

while others are of general utility and are candidates for inclusion in a future

LanguageLevel. 

The most significant special-purpose extension is the set of features for the

Display PostScript® system. Those features enable workstation applications to use

the PostScript language and the Adobe imaging model for managing the appear-

ance of the display and for interacting with the workstation’s windowing system.

The Display PostScript extensions were documented in the second edition of this

book but have been removed for this edition. Further information is available in

the Display PostScript System manuals. 

Appendix D describes strategies for writing PostScript programs that can run

compatibly on interpreters supporting different LanguageLevels. With some care,

a program can take advantage of features in a higher LanguageLevel when avail-

able but will still run acceptably when those features are not available. 



IntroductionCHAPTER 1
6

1.3 LanguageLevel 3 Overview

In addition to unifying many previous PostScript language extensions, Language-

Level 3 introduces a number of new features. This section summarizes those fea-

tures, for the benefit of readers who are already familiar with LanguageLevel 2. 

• Functions. A PostScript function is a self-contained, static description of a

mathematical function having one or more arguments and one or more results. 

• Filters. Three filters have been added, named FlateDecode, FlateEncode, and

ReusableStreamDecode. Some existing filters accept additional optional

parameters. 

• Idiom recognition. The bind operator can find and replace certain commonly

occurring procedures, called idioms, typically appearing in application prologs.

The substituted procedure achieves equivalent results with significantly im-

proved performance or quality. This enables LanguageLevel 3 features to work

in applications that have not yet been modified to use those features directly. 

• Clipping path stack. The clipsave and cliprestore operators save and restore just

the clipping path without affecting the rest of the graphics state. 

• Color spaces. Three color spaces have been added: CIEBasedDEF and CIEBased–

DEFG provide increased flexibility for specifying device-independent colors;

DeviceN provides a means of specifying high-fidelity and multitone colors. 

• Color space substitution. Colors that have been specified in DeviceGray,

DeviceRGB, or DeviceCMYK color spaces can be remapped into CIE-based

color spaces. This capability can be useful in a variety of circumstances, such as

for redirecting output intended for one device to a different one or for pro-

ducing CIE-based colors from an application that generates LanguageLevel 1

output only (and thus is unable to specify them directly). 

• Smooth shading. It is now possible to paint with a color that varies smoothly

over the object or region being painted. 

• Masked images. A sampled image can be clipped by a mask as it is painted. The

mask can be represented explicitly or encoded with a color key in the image

data. This enables the background to show through parts of the image. 

• CID-keyed fonts. This font organization provides a convenient and efficient

means for defining multiple-byte character encodings and for creating base

fonts containing a very large number of character descriptions. 



Related Publications1.4
7

• Font formats. Support has been added for additional types of base fonts, includ-

ing CFF (Compact Font Format), Chameleon®, TrueType™, and bitmap fonts. 

• Device setup. There are many additional page device parameters to control col-

orant selection, finishing options, and other features. Any device can now pro-

duce arbitrary separations, even in a monochrome printing system (which can

mark only one colorant at a time). 

• In-RIP trapping. Certain products support trapping, which is the automatic

generation of overlaps to correct for colorant misregistration during the print-

ing process. 

• Color rendering intent. A PostScript program can specify a rendering intent for

color reproduction, causing automatic selection of an appropriate CIE-based

color rendering dictionary. 

• Halftones. Several standard halftone types have been added. They include 16-

bit threshold arrays and more flexible tiling organizations for improved color

accuracy on high-resolution devices. Halftone supercells increase the number

of gray levels achievable on low-resolution devices. 

1.4 Related Publications

A number of publications related to this book are listed in the Bibliography; some

notable ones are mentioned here. For more details, see the Bibliography. 

1.4.1 The Supplement

The PostScript Language Reference Supplement documents PostScript language

extensions that are available in certain releases of Adobe PostScript® software. A

new edition of the Supplement is published along with each major release of

Adobe PostScript software. 

The Supplement documents three major classes of extensions: 

• New PostScript language features that have been introduced since the most re-

cent LanguageLevel and that are candidates for inclusion in the next Language-

Level. 

• Extensions for controlling unique features of products, such as communication

parameters, print engine options, and so on. Certain PostScript language fea-

tures, such as setdevparams, setpagedevice, and the named resource facility,



IntroductionCHAPTER 1
8

are designed to be extended in this way. Although the framework for this is a

standard part of the PostScript language, the specific extensions are product-

dependent. 

• LanguageLevel 1 compatibility operators, principally in the statusdict diction-

ary. Those features were the LanguageLevel 1 means for controlling unique fea-

tures of products, but they have been superseded. They are not formally a part

of the PostScript language, but many of them are still supported in Adobe Post-

Script interpreters as a concession to existing applications that depend on

them. 

1.4.2 Font Formats

PostScript interpreters support several standard formats for font programs, in-

cluding Adobe Type 1, CFF (Compact Font Format), TrueType, and CID-keyed

fonts. The PostScript language manifestations of those fonts are documented in

this book. However, the specifications for the font files themselves are published

separately, because they are highly specialized and are of interest to a different

user community. A variety of Adobe publications are available on the subject of

font formats, most notably the following: 

• Adobe Type 1 Font Format and Adobe Technical Note #5015, Type 1 Font Format

Supplement 

• Adobe Technical Note #5176, The Compact Font Format Specification 

• Adobe Technical Note #5012, The Type 42 Font Format Specification 

• Adobe Technical Note #5014, Adobe CMap and CID Font Files Specification 

1.4.3 Document Structure

Some conventions have been established for the structure of PostScript programs

that are to be treated as documents. Those conventions, while not formally part

of the PostScript language, are highly recommended, since they enable interoper-

ability with applications that pay attention to them. 

• Adobe Technical Note #5001, PostScript Language Document Structuring Con-

ventions Specification, describes a convention for structuring PostScript page

descriptions to facilitate their handling and processing by other programs. 



Copyrights and Trademarks1.5
9

• Adobe Technical Note #5002, Encapsulated PostScript File Format Specification,

describes a format that enables applications to treat each other’s output as in-

cluded illustrations. 

1.4.4 Portable Document Format (PDF)

Adobe has specified another format, PDF, for portable representation of electron-

ic documents. PDF is documented in the Portable Document Format Reference

Manual. 

PDF and the PostScript language share the same underlying Adobe imaging

model. A document can be converted straightforwardly between PDF and the

PostScript language; the two representations produce the same output when

printed. However, PDF lacks the general-purpose programming language frame-

work of the PostScript language. A PDF document is a static data structure that is

designed for efficient random access and includes navigational information suit-

able for interactive viewing. 

1.5 Copyrights and Trademarks

The general idea of using a page description language is in the public domain.

Anyone is free to devise his or her own set of unique commands that constitute a

page description language. However, Adobe Systems Incorporated owns the

copyright for the list of operators and the written specification for Adobe’s Post-

Script language. Thus, these elements of the PostScript language may not be cop-

ied without Adobe’s permission. Additionally, Adobe owns the trademark

“PostScript,” which is used to identify both the PostScript language and Adobe’s

PostScript software. 

Adobe will enforce its copyright and trademark rights. Adobe’s intentions are to: 

• Maintain the integrity of the PostScript language standard. This enables the

public to distinguish between the PostScript language and other page descrip-

tion languages. 

• Maintain the integrity of “PostScript” as a trademark. This enables the public

to distinguish between Adobe’s PostScript interpreter and other interpreters

that can execute PostScript language programs. 



IntroductionCHAPTER 1
10

However, Adobe desires to promote the use of the PostScript language for in-

formation interchange among diverse products and applications. Accordingly,

Adobe gives permission to anyone to: 

• Write programs in the PostScript language. 

• Write drivers to generate output consisting of PostScript language commands. 

• Write software to interpret programs written in the PostScript language. 

• Copy Adobe’s copyrighted list of commands to the extent necessary to use the

PostScript language for the above purposes. 

The only condition of such permission is that anyone who uses the copyrighted

list of commands in this way must include an appropriate copyright notice. This

limited right to use the copyrighted list of commands does not include a right to

copy this book, other copyrighted publications from Adobe, or the software in

Adobe’s PostScript interpreter, in whole or in part. 

The trademark PostScript® (or a derivative trademark, such as PostScript® 3™)

may not be used to identify any product not originating from or licensed by

Adobe. However, it is acceptable for a non-Adobe product to be described as be-

ing PostScript-compatible and supporting a specific LanguageLevel, assuming

that the claim is true. 


